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Our statistical thermodynamics model of solution of stiff, platelike, biaxial particles interacting solely via
repulsion on contactsathermal limitd fPhys. Rev. E62, 5011 s2000dg is extended to incorporate dispersion
interactions between the particles. Dispersion forces between anisotropic particles are accounted for using the
Imura-Okano approach. Numerical calculations specialized to solutions of either rods or disks show that
besides the isotropic-nematic biphasic coexistence range, inclusion of attractive forces resulted in the appear-
ance of nematic-nematic coexistence in both, disks and rods, solutions. The critical divergence of the difference
between the order parameters and concentrations of the two nematics is observed while approaching the critical
temperature. The minimum aspect ratio of rods or disks for the formation of the nematic phase is also
discussed.
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I. INTRODUCTION

Nearly 80 years after the discovery of ordered phases in
suspensions of highly anisotropic in shape colloidal particles
f1–3g, in recent years there is a substantial revival of interest
in studying formation of mesophases by suspensions of natu-
rally abundant and manmade rodlike and platelet nanopar-
ticles f4–16g, driven by potential applications of these sys-
tems. It is commonly accepted that both repulsive and
attractive forces between particles are responsible for the for-
mation of mesogenic phasesf17g. Notwithstanding reserva-
tions towards applications of lattice models to small-
molecule mesogenic systems, the lattice approach is quite
convenient for the description of steric interactions between
smacrodmolecules with large axial ratios as in such cases
molecular shapes can be simplified without substantial pen-
alty, and spatial relations between them treated in a statistical
mannerf18–25g. However, when the reference lattice is in
the laboratory frame, the allowed particle orientations are
limited to a discrete set of directions only. Additionally, con-
sideration of dispersive interactions in consistency with the
statistical lattice model becomes awkward if particles are not
rods in shapef26g. To overcome those problems an alterna-
tive concept of considering the reference lattice in the mo-
lecular frame was introduced by Warnerf27g to model rod-
like particles in a solution. As a result, the integrity of a
rodlike molecule is preserved, i.e., discretization of rods is
avoided and, consequently, also the molecular orientation
distribution function is relieved from discretization charac-
teristic of the Flory lattice approachf26,28g.

In our previous papersreferred to as Id we extended Warn-
er’s idea onto solutions of flat, rectangular parallelepipeds
splateletsd exhibiting purely steric interactionsf29g. The aim
of this second in the series paper is to incorporate into the
model dispersive interactions between the platelets.

Nonsteric interactions can be introduced into the model
most conveniently as temperature dependent dispersion
forces in the manner proposed by Imura and Okanof30,31g.
For simplicity, we consider here dispersive forces only be-

tween anisotropic molecules, i.e., neglecting existence of
such forces between solvent molecules and between solvent
and solute molecules. Ultimately, the proposed model covers
the systems of nonpolar, biaxial particles in a biaxial envi-
ronment. Describing the average orientation of system par-
ticles through Euler’s angles, we show that the overall dis-
persive potential depends solely on four order parameters, on
the absolute temperature, and on the anisotropic molecular
polarizability. Detailed numerical calculations are limited to
solutions of uniaxial particles, i.e., of either rods or square
parallelepipeds with temperature-independent positive aniso-
tropic polarizability sattractive dispersive interactiond. The
numerical algorithm proposed by Herzfeldet al. f32g is
adopted to determine the phase diagrams of these systems.

II. THEORY

As in I, our discrete model system under consideration
occupiesn0 cubic lattice cells, which are completely filled by
nx solute monodisperse plateletsx13x231 in size, andns
solvent 13131 cubes. All solute particles of the ensemble
are incapable of interpenetrating each other—steric con-
straint. After placing the solute particles on the lattice, the
remaining unoccupied cells are filled in by the solvent, i.e.,
solute-solvent and solvent-solvent steric interactions are dis-
regarded. Thus there are no voids in the system, andn0
=nxx1x2+ns; cf. I. Volume concentrations of solute and sol-
vent molecules are thenyx=x1x2nx/n0 andys=ns/n0, respec-
tively. Phase equilibrium analysis of such system requires
evaluation of the thermodynamic Gibbs potential,G
=−kT ln ZsnV /nxd, and its subsequent minimization with re-
spect to the orientation distribution function of the aniso-
tropic species,nV /nx, nV being the number of platelets hav-
ing orientation described by the solid angleV. The partition
function, Z is factorable into configurational part
Zcomb—comprising all steric interactions, the orientational
partZor, andZint accounting for other than steric interactions,
such as, e.g., solute-solutesanisotropic dispersionsd, solvent-
solute, solvent-solvent interactions or interactions with exter-
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nal fields selectric, magnetic, or flowd. In I we deliberately
disregarded those other interactionssathermal limit;Zint=1d.
Below we add into consideration the presence of dispersion
forces between platelets in the system. Influence of other
types of intermolecular interactions on the system equilib-
rium properties will be presented in subsequent publications
f33g.

Dispersive energysof electromagnetic attraction of neu-
tral atomsd between two biaxial molecules can be accounted
for in different waysf34,35g. Alternative approaches differ in
definition of expansion coefficients and their relation to ex-
perimentally observable physical quantities. We find it ad-
equate for our model to evaluate interaction energy between
two biaxial molecules in a biaxial environment following the
Imura-Okano theory of dispersive forcesf30g. This approach
defines expansion coefficients in terms of the polarizability
tensor components, absolute temperature, and axial ratio of
molecules, and gives results consistent with Maier-Saupe
form of dispersion interaction between rodlike molecules
f19,31,36g.

The original Imura-Okano model describes a system of
anisotropic particles whose electric polarizability tensor and
the inertia tensor axes coincide. The dispersion energy be-
tween two segments, sayi and j , belonging to two different
particles in the systemscf. Fig. 1d can be approximated by

«i j < −
C

rij
6 trsaia jd, s1d

whereai, a j are the polarizability tensors of the respective
segments,r ij is the distance between the centers of polariz-
ability of those segments, andC is a constant. Each of the
tensors can be represented in its principal frame as the sum
of three parts of distinguished symmetries

a = ãI + Da diags− 1
3,− 1

3, 2
3d + Da† diags− 1

2, 1
2,0d , s2d

with

ã =
ax + ay + az

3
, s3ad

Da = az −
ax + ay

2
, s3bd

Da† = ay − ax, s3cd

ax, ay, andaz being the principal components of the segment
polarizability tensora, and I being the matrix identity. The
first constituent on the right-hand sidesRHSd of Eq. s2d is
isotropic, two others are anisotropic, cylindrically and acy-
lindrically symmetric, respectively. For simplicity of further
considerations, we assume that the polarizability tensor of
the whole molecule is the same as the polarizability tensor of
molecular segmentsscubesd comprising it. Therefore the de-
scription in the segment frame can be replaced by the de-
scription in the molecular frame.

The only limitation imposed by the lattice approach is that
molecules are represented on the lattice by rectangular par-
allelepipeds. Let theZ axis of the laboratory framehXYZj
coincides with the direction of the nematic director,n. Let
also molecular frameshxyzj and hxyzkj of the test molecule
and a randomly selectedkth molecule of a system, respec-
tively, be defined in such a way that thez axes are identified
with the parallelepiped normals, andx and y axes coincide
with the long edges of the same face of the parallelepipeds.
Mutual orientation of these reference frames is completely
described by means of a set of Euler anglesV;sa ,b ,gd
f29g scf. Fig. 2d:

hXYZj ——→
V

hxyzj,

hXYZj ——→
V8

hxyzkj, s4d

hxyzj ——→
Vk

hxyzkj.

In order to find the dispersion interactions of interest, we first
express the polarizability tensor of a randomly selectedkth
molecule of a system,ak, in the basis of the test molecule
polarizability tensor,atest. As a result, we get the interaction
energy between the test molecule and akth particle given in

FIG. 1. Segmentsi and j of two interacting parallelepipeds. The
segments are separated byrWi j . For the purpose of the model calcu-
lation one molecule is denoted as “a test molecule” and the other as
“a randomly selectedkth molecule of a system;” see text.

FIG. 2. Orientation of the molecular reference frame of the test
plate hxyzj with respect to the laboratory reference framehXYZj.
Nematic directorn and the test plate normalnj+1 are indicated.
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terms of the set of Euler angles,Vk. This result has to be
transformed to the laboratory frame, and we obtain the pair-
wise potential between two molecular segmentssi.e., theith

segment of a test molecule and thej th segment of akth
system particled as a function of sets of Euler angles,V and
V8:

«i jsV,V8d = −
C

rij
6H3ãiã j + DaiDa jF2

3
s1sVds1sV8d +

1

2
s2sVds2sV8dG −

DaiDa j
†

2
fs1sVds3sV8d + s2sVds4sV8dg

−
Dai

†Da j

2
fs3sVds1sV8d + s4sVds2sV8dg −

Dai
†Da j

†

2
Fs4sVds4sV8d +

3

4
s3sVds3sV8dG

+ FsV,V8;Dai,Da j,Dai
†,Da j

†dJ , s5d

where the functionalF is a multicomponent sum of func-
tions of sina, sinb, or sing. Functionss1(V), s2(V), s3(V),
and s4(V), when averaged over all possible orientations,
yield a complete set of four biaxial order parameters
f34,35,37g:

S1 ; s1sVd = 1 −
3

2
sin2 b, s6ad

S2 ; s2sVd = sin2 b cos 2a, s6bd

S3 ; s3sVd = sin2 b cos 2g, s6cd

S4 ; s4sVd

=
1

2
s1 + cos2 bdcos 2a cos 2g − cosb sin 2a sin 2g.

s6dd

In case of apolar moleculesssin 2a=sin 2b=sin 2g;0d, the
order parameterS4 simplifies to

S4 ; s4sVd =
1

2
s1 + cos2 bdcos 2a cos 2g. s6d8d

Particular symmetries of the system or of the molecular
shape are manifested in the zeroing of the relevant order
parameters. For example, for particles with biaxial symmetry
in the uniaxial system,S2=S4=0. If, in addition, the mol-
ecules are uniaxial,S3=0, the potential depends solely on the
nematic order parameter,S1. If we limit our interest to a
system of apolar molecules, the average ofF over the ori-
entation distribution function is zero.

Assuming that molecules most efficiently interact with the
nearest neighbors only, the mean field dispersion energy for
ith segment of a test molecule oriented at angleV with re-
spect to the laboratory frame becomes

«isVd = −
Cyxzc

r*
6ṽ
H3ãiā + DaiDaF2

3
s1sVdS1 +

1

2
s2sVdS2G

−
DaiDa†

2
fs1sVdS3 + s2sVdS4g −

Dai
†Da

2
fs3sVdS1

+ s4sVdS2g −
Dai

†Da†

2
Fs4sVdS4 +

3

4
s3sVdS3GJ ,

s7d

where the average denoted by the overbar is taken over the
orientation distribution function of the platelets,wx1x2

sV8d
=nV8 /nx; zc is the number of nearest neighbors;ñ=n /n* is
the reduced molecular volume;n* andr* are the characteris-
tic molecular volume and the intermolecular distance, re-
spectively, in the close packing limitsñ=1d f18g. The com-
ponents of thesdiagonald polarizability tensor determine the
symmetry of a system and, thus, the order parameters as
well. In the isotropic phase, only the first term on the RHS of
Eq. s7d survives. For case of uniaxial molecules in the
uniaxial phase, the acylindrical part of polarizability tensor is
zerosDa†=Da†;0d, and the interaction energy is limited to
the first two components on the RHS. For biaxial molecules
in an uniaxial phase,Da†ÞDa†;0, and the third and fifth
terms on the RHS drops out. Finally, when we have a system
of biaxial particles in a biaxial phase, the full expression for
the potential should be considered.

Averaging Eq.s7d over all possible orientations the test
molecule may have, yields an average energy per segment.
Assuming equal contribution of all segments of the test mol-
ecule to the orientational distribution function, and summing
up over all pairs of segments in the system,x1x2nx/2, the
anisotropic dispersion energy hence becomes

Eint > − Sx1x2nx

2
DyxSkBT*

ñ
DHsDad2S2

3
S1

2 +
1

2
S2

2D
− DaDa†sS1S3 + S2S4d + sDa†d2S1

2
S4

2 +
3

8
S3

2DJ ,

s8d

wherekBT* ;zcC/ r*
6. In the process we assumed that since
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the test molecule can be any molecule in the system, the test
particle orientational distribution function is the same as of
the system,vx1x2

sVd;vx1x2
sV8d. The supplementary factor

of the platelet concentration,yx, reflects the assumption of the
lack of interactions between solute and solvent particles. The
sx1x2nx/2d factor slightly overestimates the number interact-
ing pairs of segments, since it accounts also for pairs belong-
ing to the same platelet, however, for very largenx, the error
is negligible.

Dispersion attractions enter the Gibbs thermodynamic po-
tential in two ways. There is a component,DG1

disp, coming
out from Zint factor of the partition function,

DG1
disp

kBT
= − ln Zint =

Eint

kBT

= − Sx1x2nxQ8

2
DyxHsDad2S2

3
S1

2 +
1

2
S2

2D
− DaDa†sS1S3 + S2S4d + sDa†d2

S1

2
S4

2 +
3

8
S3

2DJ . s9d

The second component,DG2
disp, comes from the Boltzmann

factor present in the molecular distribution function in equi-
librium

DG2
disp

kBT
=

x1x2nxQ8

2
yxHsDad2F−

4

3
S1s1 − S1d + S2

2G
+ sDa†d2F3

4
S3

2 + S4
2G − DaDa†f2S1S3

+ 2S2S4 − S3gJ . s10d

The parameterQ8=T* /Tṽ is introduced as a measure of re-
duced inverse temperature. Thus we may write

G

kBT
=

Gster

kBT
+ SDG1

disp

kBT
+

DG2
disp

kBT
D , s11d

whereGster denotes the Gibbs potential in the limit of steric
repulsions only, and is derived in I. Note at this point that the
molecular potential of the dispersive interaction experienced
by the test molecule is

UsVd
kBT

= −
x1x2Q8

2
yxHsDad2s− 2S1 sin2 b + S2 sin2 b cos 2ad

+ sDa†d2F3

4
S3 sin2 b cos 2g +

1

2
S4s1 + cos2 bd

3cos 2a cos 2gG − DaDa†F−
3

2
S3 sin2 b

+ S1 sin2 b cos 2g + S4 sin2 b cos 2a

+
1

2
S2s1 + cos2 bdcos 2a cos 2gGJ . s12d

The phase coexistence condition requires the equality of the

respective chemical potentials in two different phases,F1
andF2:

smi
F1 − mi

0d = smi
F2 − mi

0d, s13d

wherei =x, s denotes solute or solvent, respectively. Chemi-
cal potentials are separable into two parts due to the additiv-
ity of sterical and dispersion components of Gibbs function

smi
F − mi

0d = smi
F − mi

0dster+ smi
F − mi

0ddisp. s14d

Steric parts of chemical potentials are specified in I. The
dispersion terms for the anisotropic phasesAd are

S ms
A

kBT
Ddisp

=
1

2
yx

2Q8HsDad2S2

3
S1

2 +
1

2
S2

2D − DaDa†sS1S3

+ S2S4d + sDa†d2S1

2
S4

2 +
3

8
S3

2DJ + Cs, s15d

for the solvent, and

S mx
A

kBT
Ddisp

= x1x2yxQ8S1

2
yx − 1DHsDad2S2

3
S1

2 +
1

2
S2

2D
− DaDa†sS1S3 + S2S4d + sDa†d2S1

2
S4

2 +
3

8
S3

2DJ
+

1

2
x1x2yxQ8HsDad2F−

4

3
S1s1 − S1d + S2

2G
− DaDa†f2S1S3 + 2S2S4 − S3g + sDa†d2

3F3

4
S3

2 + S4
2GJ + Cx s16d

for the platelets. The termsCs and Cx in Eq. s15d and Eq.
s16d are chemical potentials of nonmixing mixtures, and are
equal to the respective chemical potentials in the isotropic
phase and, thus, cancel out when the two-phase coexistence
condition is considered. In the isotropic phase the dispersive
components of chemical potentials for both solute and sol-
vent equal to zero.

FIG. 3. Exponential divergence of the critical axial ratioxcrit sfor
yx→1d vs dispersion interaction parameterQ. The minimum axial
ratio for the formation of nematic phase in the limitQ→` is
xmin

crit =2.15±0.03 for rods andxmin
crit =1.66±0.01 for disks.
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III. CALCULATIONS AND DISCUSION

The formalism presented here is sufficiently general to
open the possibility for studying phase equilibrium in a vast
range of molecular systemsf33g. Here, for exemplary pur-
pose we restrict our attention to two most common cases of
the monodisperse uniaxial system, i.e., solutions of rods, and

of square plateletssdisksd. In such cases, formalism simpli-
fies substantially as outlined in Appendixes A and B. The
dispersion interaction parameter,Q depends now solely on
the inverse temperaturessee Appendix Ad. As Q comprises
the average polarizability factor,Da, which in general can be
either positive or negativef38g, there are two possible ranges
of interest forQ, Qù0 andQø0. In what follows we limit

FIG. 4. Phase diagrams for solutions ofsad–scd rods andsdd–sfd disks as a function of parallelepiped axial ratiox: sad 17.00,sbd 26.00,
scd 30.00, sdd 6.00, sed 8.00, andsfd 11.00. NematicsNd, isotropic sId and biphasicsI +Nd regions are indicated. Note formation ofsN1

+N2d region for sufficiently asymmetric particles;QIII and Qc indicate a triple point, and a critical point for nematic-nematicsN1+N2d
demixing, respectively.
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considerations to attractive forces between the plateletssQ
ù0d only, although it was argued that physically such a case
is more likely for rods than for disksf38g. In addition, we
assume thatDa is independent of temperature. Numerical
calculations used the method of Ref.f32g, and details of the
algorithm can be found in I. Results are summarized in Figs.
3–6.

First, we studied the interplay between steric and disper-
sive interactions in the formation of the nematic phase in the
neat systemsyx→1d, as a function of the axial ratio. As
anticipated, increasing strength of dispersive interactions, the
higher dispersion parameter or lower the temperature, lowers
the critical axial ratio for both the disklike, and the rodlike
systems; see Fig. 3. Extrapolationsexponentiald of results
gives the minimum critical molecular ratio,xmin

crit for the for-
mation of nematic phase in the uniaxial systems in the close-
packing limit and in the inverse temperature limit,Q→`.
We found that our model requires molecules to be aspherical
for the nematic phase formation:xmin

crit =2.15±0.03 for rods,
andxmin

crit =1.66±0.01 for disks. Our results do not depart sig-
nificantly from those obtained by other authors. The values
are similar to those obtained in the van der Waals approach
f39g and scaled particle theoryf40g. Numerical simulations
based on the virial expansion give the limits ranging from
xmin=2.75 for athermal lyotropic rods and disks in Monte
Carlo simulationssin the ellipsoid of revolution approxima-
tion for the molecular shaped f41g, to xmin=1 for spherocyl-
indersf42g.

Next, we generated phase diagrams for both systems of
particles, for different axial ratios. In Fig. 4 are presented
those results which are typical for particular ranges of the
ratio values.Q=0 sthe x axisd corresponds to the athermal
limit studied in I, where isotropic-nematic demixing was en-
tropically favored, according to the depletion mechanism, as
argued in Ref.f43g. In all cases the biphasic range of coex-
istence is bottle-shaped: a narrow, bottleneck part for low
values ofQ, and the broad one in the region where the at-
tractive interactions become stronger. The transition between
the narrow and the broad coexistence range is monotonous
for small axial ratios. However, for systems with high
enough axial ratio, a triple point,QIII , appears on the
biphasic-nematic border line, and separation of two nematic
phasesN1 andN2 takes place. We observed this for both rods
sxù8d and diskssxù26d, as it is a general feature between
phases of the same spatial symmetry but with a different
degree of orientational order, cf. Fig. 4scd and Fig. 4sfd.
Nematic-nematic demixing vanishes at the critical point,Qc,
in the vicinity of which a critical behavior occurs. Such
phase behavior has been observed experimentally in solu-
tions of rodlike polysg-benzyl-L-glutamated in benzyl alco-
hol f44g. Critical exponents for the divergence ofsS1

N1−S1
N2d

were obtained by fitting the data within the range where criti-
cal divergence is clearly apparent. The best-fit lines to these
fits are shown in Fig. 5 and the critical exponents are shown
in Table I. NMR results show that the critical vicinity region
of I-N transition for disklike liquid crystals is up to two
orders of magnitude smallersuT−TIII u /TIII <10−5−10−4d than
the corresponding range for rod-shaped thermotropic nemat-
ics suT−TIII u /TIII <10−3−10−2d f8,45g. A similar tendency is
visible in our results forN1−N2 transition scf. Fig. 5d, al-
though the difference is much less pronounced. To our
knowledge, this is the first time when such critical behavior

FIG. 5. Critical divergence of the order parameter logarithm
log10sS1

N1−S1
N2d sleft axisd and of the concentration logarithm

log10snr
N1−nr

N2d sright axisd vs reduced temperature logarithm
log10fuQc−Qu /Qg. The best fit critical exponent for order parameter
divergence isb1=0.547±0.002 andb1=0.493±0.005 for rodsshd
and disksssd, respectively, and for concentration divergenceb2

=0.5000±0.0004 andb2=0.495±0.001 for rodssjd and diskssPd,
respectively.

FIG. 6. The variation of the nematic order parameter at the
biphasic-nematic borderS1

** vs dispersion interaction parameter,Q
for solution of rods and disks, as a function of the parallelepiped
axial ratios,x. Broken vertical lines indicate the athermal limitsQ
=0d.
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of the nematic-nematic demixing in monodisperse system
has been modeled quantitatively. The critical divergence
shows up also in the volume concentration difference,
syN1−yN2d; see Fig. 5. The best-fitted lines give critical expo-
nents,b2=0.50000±0.0004 and 0.495±0.001, for rods and
disks, respectively, which are the mean-field valuesf46g
within an experimental error. Additional numerical calcula-
tions verified that observed deviations of all our critical ex-
ponents from the mean field value of 0.5 are solely a conse-
quence of numerical roundups and precision with whichQc
is determined.

It is also interesting to follow the nematic ordering varia-
tion along the biphasic-nematic border of the isotropic-
nematic coexistence region. The order parameter at the bor-
der, S1

** , is very sensitive to the strength of the dispersive
interactions. In Fig. 6, the order parameter at the border as a
function of Q, and for several different axial ratios of rods
and disks is presented. The universal character ofS1

** vs Q
behavior is evident. Departing from the athermal limitsbro-
ken vertical line,Q=0d, the order parameter decreases with
increasingQ, reaches a minimum, and starts to increase with
increasingQ. Clearly, the appearance of weak attractive
forces stabilizes the nematic phase, as manifested in the shift
of the biphasic-nematic border to lower concentrations; cf.
Fig. 6, even at lower concentrations of solute, and in the
lowering of the orientational order on the initial increase of
Q; cf. Fig. 6. This tendency, however, does not last too long
on increasing the strength of attractive forces. Both the bor-
der concentration and the border order parameter begin, at
some value of dispersion interactions, to increase monotoni-
cally with Q. The nematic-nematic coexistence manifests it-
self in theS1

** vs Q plot as the order parameter discontinuity
at the triple point; cf. Fig. 6. At even stronger interactions, on
increasingQ the order parameter saturates at the value close
to unity for every axial ratio: the attractive dispersion forces
overpower any steric constraints present in the system.

In the forthcoming papers we will address in turn the
phase equilibrium calculations for solution of biaxial plate-
lets, the platelet polydispersity—in particular rod-platelet bi-
nary mixtures, and the issues of solvent-solvent interactions
f33g.
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APPENDIX A: UNIAXIAL DISKS

The formalism simplifies if the plates are square,x1=x2
=x, i.e., for diskssdd. The orientational distribution function
reduces to the uniaxial one and depends solely on the Euler
angleb:

vx1x2
sVd ; vxxsbd ; vdsbd

=

sinb exps− oi
biQidexpS− Usbd

kBT
D

E sinb exps− oi
biQidexpS− Usbd

kBT
Ddb

,

i = X,Q, sA1d

where the first exponent comes from steric repulsionsfcf.
Eqs. sB4d–sB7d in Ig, and the second exponent from attrac-
tive interactions with the potential

Usbd
kBT

=
3

2
x2QydS1 sin2 b, sA2d

and the dispersion interaction parameterQ is dependent on
the inverse temperature

TABLE I. Comparison of critical exponents for divergence of the order parameter from the present study
with those obtained by other workersskey to phase notation:I, isotropic;N, nematic;NBX, biaxial nematic,
SA, smectic Ad

Uniaxial
system Type of work I-N N-N N-SA N-NBX

Rodlike Theory 0.5a

0.25b
0.547c 0.94–1.00d

Experiment 0.2–0.3e

0.2–0.5f

Disklike Theory 0.493c 0.3–0.36g

Experiment 0.38–0.56h

0.34i

aMean fieldf46,47g.
bTricritical pt. f48g.
cThis work.
dEPR f49g.
eBirefrigerencef50,51g.
fStatic dielectric permittivityf52g.
gRenormalizationf53g.
hInterferometryf54g.
iNMR f8g.
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Q =
2zcC

3r*
6ñ

sDad2 1

kBT
sA3d

in analogy to Flory and Ronca’sT̃−1 f19g.
The dispersive term of the Gibbs function in the nematic

phasesNd is

S GN

n0kBT
Ddisp

= − syd
Nd2S1S1 −

S1

2
DQ, sA4d

and the relevant parts of chemical potentials for solventssd
and solutesdd are

S ms
N

kBT
Ddisp

=
1

2
syd

Nd2QS1
2 sA5d

and

S md
N

kBT
Ddisp

= − x2Qyd
NS1S1 −

1

2
yd

NS1D , sA6d

respectively, and together with their counterparts from steric
repulsionsfcf. Eqs.sB9d and sB10d in Ig they constitute the
total chemical potentials of the components in the nematic
phase.

Introduction of the dispersive attraction into the system
does not alter Gibbs function or chemical potentials of the
solute nor of the solvent in the isotropic phase; cf. Eqs.s33d,
sB11d, andsB12d in I.

APPENDIX B: LONG RODS

Yet another limit of the general theory presented here is a
solution of rodssrd. In such case the substitution of either
x1=1 or x2=1 simplifies the model formalism, and after in-
clusion of the attractive interactions between rods, the orien-
tational distribution function becomes

vx1x2
sVd ; v1xsbd ; vrsbd

=

sinb expsbxyQxydexpS− Usbd
kBT

D
E sinb exps− bxyQxydexpS− Usbd

kBT
Ddb

,

sB1d

where the first exponent in the numerator on RHS of Eq.
sB1d comes from steric repulsions, see Eqs.sC17d–sC20d in
I, and the potential of the pairwise dispersive interaction be-
tween rods is

Usbd
kBT

=
3

2
xQyrS1 sin2 b, sB2d

whereQ is defined in Eq.sA3d.
The nematic phase Gibbs function, and the chemical po-

tential dispersive terms in the nematic phase are

S GN

n0kBT
Ddisp

= − syr
Nd2S1S1 −

S1

2
DQ, sB3d

S ms
N

kBT
Ddisp

=
1

2
syr

Nd2QS1
2, sB4d

S md
N

kBT
Ddisp

= − xQyr
NS1S1 −

1

2
yr

NS1D . sB5d

As for disks, the introduction of dispersive attraction into the
system does not alter the Gibbs function or the chemical
potentials of the solute nor of the solvent in the isotropic
phase.
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