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Phase equilibria in solutions of platelike particles: Systems with steric and dispersive interactions
between the platelets
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Our statistical thermodynamics model of solution of stiff, platelike, biaxial particles interacting solely via
repulsion on contactathermal limiy [Phys. Rev. E62, 5011 (2000] is extended to incorporate dispersion
interactions between the particles. Dispersion forces between anisotropic particles are accounted for using the
Imura-Okano approach. Numerical calculations specialized to solutions of either rods or disks show that
besides the isotropic-nematic biphasic coexistence range, inclusion of attractive forces resulted in the appear-
ance of nematic-nematic coexistence in both, disks and rods, solutions. The critical divergence of the difference
between the order parameters and concentrations of the two nematics is observed while approaching the critical
temperature. The minimum aspect ratio of rods or disks for the formation of the nematic phase is also
discussed.
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[. INTRODUCTION tween anisotropic molecules, i.e., neglecting existence of
such forces between solvent molecules and between solvent
Nearly 80 years after the discovery of ordered phases iand solute molecules. Ultimately, the proposed model covers
suspensions of highly anisotropic in shape colloidal particlegshe systems of nonpolar, biaxial particles in a biaxial envi-
[1-3], in recent years there is a substantial revival of interestonment. Describing the average orientation of system par-
in studying formation of mesophases by suspensions of natuicles through Euler’s angles, we show that the overall dis-
rally abundant and manmade rodlike and platelet nanopapersive potential depends solely on four order parameters, on
ticles [4-16], driven by potential applications of these sys-the absolute temperature, and on the anisotropic molecular
tems. It is commonly accepted that both repulsive ancholarizability. Detailed numerical calculations are limited to
attractive forces between particles are responsible for the fosolutions of uniaxial particles, i.e., of either rods or square
mation of mesogenic phasgs7]. Notwithstanding reserva- parallelepipeds with temperature-independent positive aniso-
tions towards applications of lattice models to small-tropic polarizability (attractive dispersive interactipnThe
molecule mesogenic systems, the lattice approach is quiteumerical algorithm proposed by Herzfekt al. [32] is

convenient for the description of steric interactions betweemdopted to determine the phase diagrams of these systems.
(macrgmolecules with large axial ratios as in such cases

molecular shapes can be simplified without substantial pen- Il. THEORY
alty, and spatial relations between them treated in a statistical
manner[18—25. However, when the reference lattice is in  As in |, our discrete model system under consideration
the laboratory frame, the allowed particle orientations aredccupiesn, cubic lattice cells, which are completely filled by
limited to a discrete set of directions only. Additionally, con- ny solute monodisperse plateletgX x, X 1 in size, andng
sideration of dispersive interactions in consistency with thesolvent X 1X 1 cubes. All solute particles of the ensemble
statistical lattice model becomes awkward if particles are noare incapable of interpenetrating each other—steric con-
rods in shap§26]. To overcome those problems an alterna-straint. After placing the solute particles on the lattice, the
tive concept of considering the reference lattice in the mo+emaining unoccupied cells are filled in by the solvent, i.e.,
lecular frame was introduced by Warn@7] to model rod-  solute-solvent and solvent-solvent steric interactions are dis-
like particles in a solution. As a result, the integrity of a regarded. Thus there are no voids in the system, @nd
rodlike molecule is preserved, i.e., discretization of rods issnX;X;+ns cf. I. Volume concentrations of solute and sol-
avoided and, consequently, also the molecular orientatioment molecules are them=x;x,n,/ng and vs=ns/ Ny, respec-
distribution function is relieved from discretization charac-tively. Phase equilibrium analysis of such system requires
teristic of the Flory lattice approadl26,28|. evaluation of the thermodynamic Gibbs potentiah

In our previous papereferred to as)lwe extended Warn- =-KTIn Z(ny/n,), and its subsequent minimization with re-
er's idea onto solutions of flat, rectangular parallelepipedspect to the orientation distribution function of the aniso-
(platelets exhibiting purely steric interactior®9]. The aim  tropic speciesng/n,, no being the number of platelets hav-
of this second in the series paper is to incorporate into théng orientation described by the solid angle The partition
model dispersive interactions between the platelets. function, Z is factorable into configurational part

Nonsteric interactions can be introduced into the model.,,s—comprising all steric interactions, the orientational
most conveniently as temperature dependent dispersigpartZ,,, andZ,, accounting for other than steric interactions,
forces in the manner proposed by Imura and OK&8®m31]. such as, e.g., solute-solu@nisotropic dispersiopssolvent-
For simplicity, we consider here dispersive forces only be-ssolute, solvent-solvent interactions or interactions with exter-
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FIG. 1. Segmentsandj of two interacting parallelepipeds. The FIG. 2. Orientation of the molecular reference frame of the test
segments are separated fy For the purpose of the model calcu- plate {xyZ with respect to the laboratory reference frafeyz.
lation one molecule is denoted as “a test molecule” and the other adematic directom and the test plate normal,; are indicated.

“a randomly selectettth molecule of a system;” see text.
ayt
nal fields (electric, magnetic, or floy In | we deliberately Aa=a,- —ZY (3b)
disregarded those other interactidiathermal limit; Z;,=1).
Below we add into consideration the presence of dispersion +
forces between platelets in the system. Influence of other Aa’=ay—ay, (30)

types of intermolecular interactions on the system equiIib-aX’ «,, anda, being the principal components of the segment
rium properties will be presented in subsequent pUb|icationﬁolarizability tensore, and| being the matrix identity. The
[33]'_ ) i ) first constituent on the right-hand sidRHS) of Eq. (2) is
Dispersive energyof electromagnetic attraction of neu- isairopic, two others are anisotropic, cylindrically and acy-
tral atoms between two biaxial molecules can be accountedingrically symmetric, respectively. For simplicity of further
for in different ways34,39. Alternative approaches differin - cqnsjgerations, we assume that the polarizability tensor of
definition of expansion coefficients and their relation to €X-the whole molecule is the same as the polarizability tensor of
perimentally observable physical quantities. We find it ad-pg1ecular segment&ubes comprising it. Therefore the de-
equate for our model to evaluate interaction energy betweegcription in the segment frame can be replaced by the de-
two biaxial molecules in a biaxial environment following the scription in the molecular frame.
Imura-Okano theory of dispersive forck30]. This approach The only limitation imposed by the lattice approach is that

defines expansion coefficients in terms of the pola_lrizabi_litymmecmeS are represented on the lattice by rectangular par-
tensor componenps, absolute tempgrature, qnd ax!al ratio %ﬁlelepipeds. Let th& axis of the laboratory framéxYz}
molecules, and gives results consistent with Maier-Saupgqinciges with the direction of the nematic director, Let
form of dispersion interaction between rodlike molecules,isq molecular framelxyz} and{xyZ} of the test molecule
[19,31,34. (Qnd a randomly selectekth molecule of a system, respec-

The orliginal .Imura-Okano model desg:ribeg a system o ively, be defined in such a way that thexes are identified
anisotropic particles whose electric polarizability tensor an ith the parallelepiped normals, andandy axes coincide

the inertia tensor axes _coinc?de. The _dispersion t_efpergy b‘?/T/ith the long edges of the same face of the parallelepipeds.
tween two segments, sayand], belonging to two different Mutual orientation of these reference frames is completely

particles in the systertcf. Fig. 1) can be approximated by  jascribed by means of a set of Euler angies (a, 3, 7)
c [29] (cf. Fig. 2:
gj =~ -~ r—etr(aiaj), (1) 0
! XYZ} —— {xyz}
y 1
where o, a; are the polarizability tensors of the respective

segmentsy;; is the distance between the centers of polariz- Q

ability of those segments, ard is a constant. Each of the (XYZ} —— {xyZ}, (4)
tensors can be represented in its principal frame as the sum

of three parts of distinguished symmetries Qk

5 . {xyz — {xyZ}.
=3l + Aadiag- 3,-1,2) + Aa' diag- £,1,0), (2 y Y
In order to find the dispersion interactions of interest, we first

with express the polarizability tensor of a randomly seledtidd
molecule of a systemg,, in the basis of the test molecule
i R R (3a)  Polarizability tensoraes, As a result, we get the interaction

3 ' energy between the test molecule ankttaparticle given in
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terms of the set of Euler angle€X. This result has to be segment of a test molecule and tith segment of akth
transformed to the laboratory frame, and we obtain the pairsystem particleas a function of sets of Euler angle€3,and
wise potential between two molecular segmedits, theith  Q’:

Cl. .. 2 1 AaiAal
g;(Q,Q') =~ F{Sm aj+ AaiAaj{gsl(Q)sl(ﬂ’) + 552(9)52(9’)} - '—ZL[sl(Q)ss(Q’) +5(0)s4(Q)]
ij
AalAa; AalAa! 3
- 'Tl[ss(ﬂ)sl(ﬂ’) +54(Q)s,(Q)] - '—ZL[SAQ)SAQ’) + 55 Q)s(2)
+@(Q,Q';Aai,AaJ,Aar,Aaf)}, (5)
[
where the functionatb is a multicomponent sum of func- Cuze) . — ) 1
tions of sina, sin, or siny. Functionss;(€)), s,(€2), sx(€Y), &(Q) =~ o 3aja+ AaiAa 551(9)31*' 552(9)32
and s,(Q)), when averaged over all possible orientations, * v_ —
yield a complete set of four biaxial order parameters AajAa’ A
34.35.37 - — [ V)S+ 5(V)S] - ——[s5(V)S,
[34,35,31 2 2
— AafAat 3
N1 -« +54(0)S] - — [s (s +—ss(9)83”
=s5(Q)=1-=sir s, 6 4 AT :
S =s(0) 5 ST B (6a) 2 4
(7
= =i where the average denoted by the overbar is taken over the
S, = s,(Q) =sirf B cos , (6b)

orientation distribution function of the platelets , (€2')

=ng./ny; z. is the number of nearest neighbois; v/ v is

S; = s5(Q) =sir? B cos 2y, (60) the reduced molecular volume; andr. are the characteris-
tic molecular volume and the intermolecular distance, re-
spectively, in the close packing lim{@=1) [18]. The com-

S =s4(Q) ponents of thédiagonal polarizability tensor determine the
1 symmetry of a system and, thus, the order parameters as
= =(1 + cog B)cos 2 cos 2y — cosp sin 2 sin 2y. well. In the isotropic phase, only the first term on the RHS of
2 Eq. (7) survives. For case of uniaxial molecules in the

(6d) uniaxial phase, the acylindrical part of polarizability tensor is
zero(Aa'=Aaf=0), and the interaction energy is limited to
In case of apolar moleculdsin 2a=sin 28=sin 2y=0), the  the first two components on_t?e RHS. For biaxial molecules
order parametes, simplifies to in an uniaxial phaseAa’ # Aa _EO, and the third and fifth
terms on the RHS drops out. Finally, when we have a system
of biaxial particles in a biaxial phase, the full expression for
the potential should be considered.

Averaging Eq.(7) over all possible orientations the test
molecule may have, yields an average energy per segment.
Particular symmetries of the system or of the moleculaAssuming equal contribution of all segments of the test mol-
shape are manifested in the zeroing of the relevant ordefcule to the orientational distribution function, and summing
parameters. For example, for particles with biaxial symmetry/P over all pairs of segments in the systexpn,/2, the
in the uniaxial systemS,=S,=0. If, in addition, the mol- anisotropic dispersion energy hence becomes
ecules are uniaxia;=0, the potential depends solely on the X1XoNy keT'\) — (2., 1
nematic order paramete§;. If we limit our interest to a int =~ T w| =] (Aa) 551 +§%
system of apolar molecules, the averagebobver the ori-

S =5,(0) = %(1 +cog B)cos 2w cos 2y.  (6d)

v

entation distribution function is zero. — —F2flc2,. 32
Assuming that molecules most efficiently interact with the ~Aadd!(§,S+SS) + (Aa) (ES“' * §S3 )}

nearest neighbors only, the mean field dispersion energy for )

ith segment of a test molecule oriented at arglevith re-

spect to the laboratory frame becomes whereksT =2z.C/r®. In the process we assumed that since
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the test molecule can be any molecule in the system, the test < rod
particle orientational distribution function is the same as of 151 R g/?skss .
the system,wxlxz(ﬂ)EleXZ(Q’). The supplementary factor
of the platelet concentration, reflects the assumption of the
lack of interactions between solute and solvent particles. The
(x1%ony/ 2) factor slightly overestimates the number interact-
ing pairs of segments, since it accounts also for pairs belong-
ing to the same platelet, however, for very largethe error
is negligible.

Dispersion attractions enter the Gibbs thermodynamic po- 20 . .
tential in two ways. There is a componeaiG¢s", coming 00 05 10 15 20
out from Z;,; factor of the partition function,

crit  crit
-xmin)

In(x

AGisp E FIG. 3. Exponential divergence of the critical axial ratfd! (for
e Zi= —nt w— 1) vs dispersion interaction paramet@r The minimum axial
keT keT ratio for the formation of nematic phase in the linfit—c is
B (Xlxznx@)') . 2( Zﬁ . 1§) xS =2.15+0.03 for rods ans®'l\=1.66+0.01 for disks.
U2 )" | | . |
— — respective chemical potentials in two different phades,
- AaAad'(§5+S,5) + (Aa') andF,:
1 3
<ES§+§§>} 9) (i = ) = (i 2= ), (13

wherei=x, s denotes solute or solvent, respectively. Chemi-
cal potentials are separable into two parts due to the additiv-
ity of sterical and dispersion components of Gibbs function

The second componenyGS*P, comes from the Boltzmann
factor present in the molecular distribution function in equi-

librium
AGIP xxon® | — [ 4 (i = ) = (= p))S"+ (f = pa) . (14
k ?r - 1 22X vx{(Aa)Z[_ésl(l_Sl)_’_g] 1 1 | 1 I I
B Steric parts of chemical potentials are specified in I. The
3 dispersion terms for the anisotropic phdse are
—f)z[z%z_'_ s, } SanaT[255, p pic p
A\ disp
7o) s
— = -0 (Aa) + AaAa'(SS;
+2S5,5,- %]}. (10) (kBT 2 3 %
23 . . _.f
The paramete®’=T /Tv is introduced as a measure of re- *$S) +(Aa) ( 58+ % )} *C (19

duced inverse temperature. Thus we may write
for the solvent, and

G Gster AGcliisp AGgisp
St o 1 A\ af2e 1
(—X) :Xlxzvx®’<—vx—l> (Aa)2<—3f+—§>
whereGS*" denotes the Gibbs potential in the limit of steric keT 2 3 2
repulsions only, and is derived in I. Note at this point that the . __ /1 3
molecular potential of the dispersive interaction experienced - AaAa' (S +SS) + (AaT)Z(Esfﬁ 552'3
by the test molecule is
u@Q o' + '{(A_)Z[ EYEREY +§}
XqX = 0 a)| -3 -
k_T) 1; {(Aa)z( 2S, sir’ B+ S, sir? B cos ) 2 2 3
’ ; . - Aada'[25,5;+ 25,5~ Sl + (Ad')?
+(m)2[—% sir? Bcos 2y + =S,(1 + cog B) 3.,
4 2 X 2S+SS| [ +C (16)
XCOSs Zv cos Zy] Aala {_ 2SI B for the platelets. The term§s and C, in Eq. (15 and Eq.
. . (16) are chemical potentials of nonmixing mixtures, and are
+ Sy SiP B oS 2y + Sy sir? B cos 2 equal to the respective chemical potentials in the isotropic
1 phase and, thus, cancel out when the two-phase coexistence
+ 53(1 +co$ B)cos 2 cos 2y | | (12)  condition is considered. In the isotropic phase the dispersive

components of chemical potentials for both solute and sol-
The phase coexistence condition requires the equality of theent equal to zero.
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FIG. 4. Phase diagrams for solutions(af—(c) rods and(d)—(f) disks as a function of parallelepiped axial ratio(a) 17.00,(b) 26.00,
(c) 30.00,(d) 6.00, (e) 8.00, and(f) 11.00. NematiaN), isotropic (I) and biphasidl+N) regions are indicated. Note formation Ofl;

+N,) region for sufficiently asymmetric particle),, and ©. indicate a triple point, and a critical point for nematic-nemat +N,)
demixing, respectively.

[1l. CALCULATIONS AND DISCUSION of square platelet&disks. In such cases, formalism simpli-

fies substantially as outlined in Appendixes A and B. The
The formalism presented here is sufficiently general todispersion interaction parameté, depends now solely on

open the possibility for studying phase equilibrium in a vastthe inverse temperatutsee Appendix A As @ comprises
range of molecular systeni83]. Here, for exemplary pur- the average polarizability factakea, which in general can be
pose we restrict our attention to two most common cases afither positive or negativied8], there are two possible ranges
the monodisperse uniaxial system, i.e., solutions of rods, andf interest for®, ® =0 and® <0. In what follows we limit
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40 35 30 25 20 45 -10 ~FIG. 6. The variation of the nematic order parameter at the
|°g1o|@c_®|/® biphasic-nematic borde®;, vs dispersion interaction parameter,

for solution of rods and disks, as a function of the parallelepiped
axial ratios,x. Broken vertical lines indicate the athermal lingé

FIG. 5. Critical divergence of the order parameter Iogarithm_o)

log;o(S,N1-S,N2) (left axi9 and of the concentration logarithm
log;o(v, t—v,2) (right axi9 vs reduced temperature logarithm
log,{ |®,—®|/0]. The best fit critical exponent for order parameter ~ Next, we generated phase diagrams for both systems of
divergence is3,=0.547+0.002 angB;=0.493+0.005 for rod$]) particles, for different axial ratios. In Fig. 4 are presented
and disks(O), respectively, and for concentration divergen8e  those results which are typical for particular ranges of the
=0.5000+£0.0004 an@,=0.495+0.001 for rod¢M) and diskq®), ratio values.®=0 (the x axis) corresponds to the athermal
respectively. limit studied in I, where isotropic-nematic demixing was en-
tropically favored, according to the depletion mechanism, as
considerations to attractive forces between the platéf@ts argued in Ref[43]. In all cases the biphasic range of coex-
=0) only, although it was argued that physically such a caséstence is bottle-shaped: a narrow, bottleneck part for low
is more likely for rods than for diskE38]. In addition, we values of®, and the broad one in the region where the at-
assume thai\e is independent of temperature. Numerical tractive interactions become stronger. The transition between
calculations used the method of RE32], and details of the the narrow and the broad coexistence range is monotonous
algorithm can be found in I. Results are summarized in Figsfor small axial ratios. However, for systems with high
3-6. enough axial ratio, a triple pointP,,, appears on the
First, we studied the interplay between steric and disperbiphasic-nematic border line, and separation of two nematic
sive interactions in the formation of the nematic phase in théohases\; andN, takes place. We observed this for both rods
neat system(y,— 1), as a function of the axial ratio. As (X=8) and disks(x=26), as it is a general feature between
anticipated, increasing strength of dispersive interactions, thehases of the same spatial symmetry but with a different
higher dispersion parameter or lower the temperature, lowerdegree of orientational order, cf. Fig(c# and Fig. 4f).
the critical axial ratio for both the disklike, and the rodlike Nematic-nematic demixing vanishes at the critical poiy,
systems; see Fig. 3. Extrapolati¢exponentigl of results in the vicinity of which a critical behavior' occurs. _Such
gives the minimum critical molecular ratia’"" for the for- ~ phase behavior has been observed experimentally in solu-
mation of nematic phase in the uniaxial systems in the closetions of rodlike poly(y-benzyli-glutamatg in benzyl alco-
packing limit and in the inverse temperature lim@,—.  hol [44]. Critical exponents for the divergence ("~S*?)
We found that our model requires molecules to be asphericalere obtained by fitting the data within the range where criti-
for the nematic phase formatiowfnr}}1=2.1510.03 for rods, cal divergence is clearly apparent. The best-fit lines to these
andx®t =1.66+0.01 for disks. Our results do not depart sig-fits are shown in Fig. 5 and the critical exponents are shown
nificantly from those obtained by other authors. The valuesn Table I. NMR results show that the critical vicinity region
are similar to those obtained in the van der Waals approachf I-N transition for disklike liquid crystals is up to two
[39] and scaled particle theofyt0]. Numerical simulations orders of magnitude small€fT-T,,|/T,, =10°-10"*) than
based on the virial expansion give the limits ranging fromthe corresponding range for rod-shaped thermotropic nemat-
Xmin=2.75 for athermal lyotropic rods and disks in Monte ics (|[T-T,|/T, =10°3-10?) [8,45]. A similar tendency is
Carlo simulationg(in the ellipsoid of revolution approxima- visible in our results folN;—N, transition (cf. Fig. 5, al-
tion for the molecular shapé41], to x,,,=1 for spherocyl- though the difference is much less pronounced. To our
inders[42]. knowledge, this is the first time when such critical behavior
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TABLE |I. Comparison of critical exponents for divergence of the order parameter from the present study
with those obtained by other workeflsey to phase notatior; isotropic;N, nematic;Ngy, biaxial nematic,

Sa, Smectic A
Uniaxial
system Type of work I-N N-N N-Sp N-Ngx
Rodlike Theory 08 0.54F 0.94-1.08
0.28
Experiment 0.2-03
0.2-0.%

Disklike Theory 0.493 0.3-0.38

Experiment 0.38-0.56

0.34

Mean field[46,47.

PTricritical pt. [48].

“This work.

YEPR[49].
“Birefrigerence[50,51].

'Static dielectric permittivity52].
9Renormalizatior{53].
Mnterferometry[54].

'NMR [8].

of the nematic-nematic demixing in monodisperse system In the forthcoming papers we will address in turn the
has been modeled quantitatively. The critical divergencephase equilibrium calculations for solution of biaxial plate-
shows up also in the volume concentration differencelets, the platelet polydispersity—in particular rod-platelet bi-
(M-2"2); see Fig. 5. The best-fitted lines give critical expo- nary mixtures, and the issues of solvent-solvent interactions
nents, 3,=0.50000+0.0004 and 0.495+0.001, for rods and[33].
disks, respectively, which are the mean-field val(ié§]

within an experimental error. Additional numerical calcula-
tions verified that observed deviations of all our critical ex-

ponents from the mean field value of 0.5 are SOIer a conse- This work was Supported by the Polish State Committee

quence of numerical roundups and precision with whith  for Scientific ResearcliKBN) through Grant No. 2 P0O3B
is determined. 086 23.

It is also interesting to follow the nematic ordering varia-
tion along the biphasic-nematic border of the isotropic-
nema*tjc coexistence region. The order parameter at the bor-
der, Sl , s very sensitive to the Strength of the diSperSive The formalism S|mp||f|es if the p|ates are squUaxesXx,
interactions. In Fig. 6, the order parameter at the border asay j.e., for disks(d). The orientational distribution function

and disks is presented. The universal charactegols @  gnglep:

behavior is evident. Departing from the athermal liighito-

ken vertical line,@=0), the order parameter decreases with  wxx,(Q) = w(B) = wy(B)

increasing®, reaches a minimum, and starts to increase with —u(p)
increasing®. Clearly, the appearance of weak attractive sin B exp(— Ei biQi)EXP<—)
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forces stabilizes the nematic phase, as manifested in the shift kgT

of the biphasic-nematic border to lower concentrations; cf. - ] -U(B) '
Fig. 6, even at lower concentrations of solute, and in the J sin B exp(- >, biQi)eXP< T )dﬁ
lowering of the orientational order on the initial increase of B

0®; cf. Fig. 6. This tendency, however, does not last too long i=X,Q, (A1)

on increasing the strength of attractive forces. Both the bor- . . .
. . here the first exponent comes from steric repulsifsfs
der concentration and the border order parameter begin, .
: L . ; gs. (B4)—(B7) in I], and the second exponent from attrac-
some value of dispersion interactions, to increase monotonl-. . ! ; .
. : : ) . . tive interactions with the potential
cally with ®. The nematic-nematic coexistence manifests it-
self in theSl v_s@ plot. as the order parameter dlsco_ntlnuny u(p) _ §X2®v S sir? 3 (A2)
at the triple point; cf. Fig. 6. At even stronger interactions, on T 2 d ;
increasing® the order parameter saturates at the value close B
to unity for every axial ratio: the attractive dispersion forcesand the dispersion interaction parame@eis dependent on
overpower any steric constraints present in the system.  the inverse temperature
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0= 2ZCC )2 (AS) wxlxz(Q) = wlx(,g) = wr(ﬁ)
3r kBT —
: u(p)
~ sin B exp(b,,Q,y)ex
in analogy to Flory and Ronca®™* [19]. kgT
The dispersive term of the Gibbs function in the nematic - _ -U(p) ’
phase(N) is J sin B exp(— by Qy)ex T ds
B
GN )disp ) ( Sl) (Bl)
=- -=
(nokBT (h)’s|1-20, (A4)

_ _ where the first exponent in the numerator on RHS of Eq.
and the relevant parts of chemical potentials for solMeht (B1) comes from steric repulsions, see E€317)—(C20) in

and solute(d) are I, and the potential of the pairwise dispersive interaction be-
N\disp ¢ tween rods is
Hs =N 20 A5
(kBT> o) S (AS) up _3
x@ u'S, sir? B, (B2)
and kgT

PR A 1, where® is defined in Eq(A3).
Q1) T X 0S| 1-7uS ), (A6) The nematic phase Gibbs function, and the chemical po-
tential dispersive terms in the nematic phase are
respectively, and together with their counterparts from steric

repulsiongcf. Egs.(B9) and (B10) in 1] they constitute the GN \disp 22 S

total chemical potentials of the components in the nematic nokeT/ ~(@)S(1 ) ©, (B3)

phase.

Introduction of the dispersive attraction into the system N\ dis

does not alter Gibbs function or chemical potentials of the <&) p: l(lﬁ)2®§1 (B4)

solute nor of the solvent in the isotropic phase; cf. Eg3), KgT '

(B11), and(B12) in I.
N \ disp 1

APPENDIX B: LONG RODS (If_c'ir> = —x@v{“81<1 —514“31)- (B5)

B

Yet another limit of the general theory presented here is a
solution of rods(r). In such case the substitution of either As for disks, the introduction of dispersive attraction into the
x;=1 orx,=1 simplifies the model formalism, and after in- system does not alter the Gibbs function or the chemical
clusion of the attractive interactions between rods, the orienpotentials of the solute nor of the solvent in the isotropic

tational distribution function becomes phase.
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